Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 44942-44954, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046318

RESUMO

Although water is essential for life, as per the United Nations, around 2 billion people in this world lack access to safely managed drinking water services at home. Herein we report the development of a two-dimensional (2D) fluorinated graphene oxide (FGO) and polyethylenimine (PEI) based three-dimensional (3D) porous nanoplatform for the effective removal of polyfluoroalkyl substances (PFAS), pharmaceutical toxins, and waterborne pathogens from contaminated water. Experimental data show that the FGO-PEI based nanoplatform has an estimated adsorption capacity (qm) of ∼219 mg g-1 for perfluorononanoic acid (PFNA) and can be used for 99% removal of several short- and long-chain PFAS. A comparative PFNA capturing study using different types of nanoplatforms indicates that the qm value is in the order FGO-PEI > FGO > GO-PEI, which indicates that fluorophilic, electrostatic, and hydrophobic interactions play important roles for the removal of PFAS. Reported data show that the FGO-PEI based nanoplatform has a capability for 100% removal of moxifloxacin antibiotics with an estimated qm of ∼299 mg g-1. Furthermore, because the pore size of the nanoplatform is much smaller than the size of pathogens, it has a capability for 100% removal of Salmonella and Escherichia coli from water. Moreover, reported data show around 96% removal of PFAS, pharmaceutical toxins, and pathogens simultaneously from spiked river, lake, and tap water samples using the nanoplatform.

2.
ACS Nano ; 17(20): 20262-20272, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830778

RESUMO

Dielectric capacitors are critical components in electronics and energy storage devices. The polymer-based dielectric capacitors have the advantages of device flexibility, fast charge-discharge rates, low loss, and graceful failure. Elevating the use of polymeric dielectric capacitors for advanced energy applications such as electric vehicles (EVs), however, requires significant enhancement of their energy densities. Here, we report a polymer thin film heterostructure-based capacitor of poly(vinylidene fluoride)/poly(methyl methacrylate) with stratified 2D nanofillers (Mica or h-BN nanosheets) (PVDF/PMMA-2D fillers/PVDF), that shows enhanced permittivity, high dielectric strength, and an ultrahigh energy density of ≈75 J/cm3 with efficiency over 79%. Density functional theory calculations verify the observed permittivity enhancement. This approach of using oriented 2D nanofillers-based polymer heterostructure composites is expected to be versatile for designing high energy density thin film polymeric dielectric capacitors for myriads of applications.

3.
ACS Appl Bio Mater ; 6(6): 2446-2458, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267204

RESUMO

Due to the lack of early detection before metastasis and failure of current therapy to cure the disease, lung cancer contributes to the highest cancer-related mortality worldwide. Tenascin C (TNC) (+) exosomes promote metastasis, amphiregulin (AREG) (+) exosomes are associated with chemotherapy resistance, and programmed cell death ligand-1 (PDL-1) (+) exosomes are associated with immunotherapy resistance, and they are emerging as biomarkers in clinics. However, due to heterogeneity, rapid isolation and multiplex detection of these exosomes are challenging. Herein, we report the design of an antibody-conjugated multi-color (orange, yellow, and green)-emissive carbon dot (CD)-attached cobalt spinel ferrite (CoFe2O4)-based magneto-luminescent nanoarchitecture for targeted capturing and identification of TNC (+), AREG (+), and PDL-1(+) exosomes selectively and simultaneously from whole blood samples. More importantly, to capture and identify the targeted AREG (+) exosome from an infected whole-blood sample, an anti-AREG antibody-attached green (520 nm)-emissive CD-conjugated CoFe2O4 nanoparticle-based magnetic-green luminescence nanoarchitecture was developed. Similarly, an anti-PDL-1 antibody-attached orange (600 nm)-emissive CDs-based magnetic-orange luminescence nanoarchitecture has been produced to capture and identify the PDL-1 (+) exosome. Furthermore, an anti-TNC antibody-attached yellow (560 nm)-emissive CD-based magnetic-orange luminescent nanoarchitecture has been designed to capture and identify the TNC (+) exosome. Notably, our finding reveals that 100% TNC (+) exosomes can be captured and imaged selectively from an infected blood sample using an anti-TNC antibody-conjugated nanoarchitecture. In addition, 100% AREG (+) exosomes can be captured and imaged selectively using an anti-AREG antibody-conjugated nanoarchitecture. Moreover, 100% PDL-1 (+) exosomes can be captured and imaged selectively using an anti-PDL-1 antibody-conjugated nanoarchitecture. Furthermore, we have demonstrated that a multi-color-emissive nanoarchitecture can be used for capturing and imaging all three exosomes simultaneously.


Assuntos
Exossomos , Neoplasias Pulmonares , Nanopartículas , Humanos , Exossomos/metabolismo , Luminescência , Neoplasias Pulmonares/metabolismo , Biomarcadores/metabolismo
4.
ACS Omega ; 8(14): 13202-13212, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065067

RESUMO

Despite black cubic phase α-CsPbI3 nanocrystals having an ideal bandgap of 1.73 eV for optoelectronic applications, the phase transition from α-CsPbI3 to non-perovskite yellow δ-CsPbI3 phase at room temperature remains a major obstacle for commercial applications. Since γ-CsPbI3 is thermodynamically stable with a bandgap of 1.75 eV, which has great potential for photovoltaic applications, herein we report a conceptually new method for the targeted design of phase stable and near unity photoluminescence quantum yield (PLQY) two-dimensional (2D) γ-CsPbI3 nanoplatelets (NPLs) and one-dimensional (1D) γ-CsPbI3 nanobelts (NBs) by wavelength dependent light-induced assembly of CsPbI3 cubic nanocrystals. This article demonstrates for the first time that by varying the excitation wavelengths, one can design air stable desired 2D nanoplatelets or 1D nanobelts selectively. Our experimental finding indicates that 532 nm green light-driven self-assembly produces phase stable and highly luminescent γ-CsPbI3 NBs from CsPbI3 nanocrystals. Moreover, we show that a 670 nm red light-driven self-assembly process produces stable and near unity PLQY γ-CsPbI3 NPLs. Systematic time-dependent microscopy and spectroscopy studies on the morphological evolution indicates that the electromagnetic field of light triggered the desorption of surface ligands from the nanocrystal surface and transformation of crystallographic phase from α to γ. Detached ligands played an important role in determining the morphologies of final structures of NBs and NPLs from nanocrystals via oriented attachment along the [110] direction initially and then the [001] direction. In addition, XRD and fluorescence imaging data indicates that both NBs and NPLs exhibit phase stability for more than 60 days in ambient conditions, whereas the cubic phase α-CsPbI3 nanocrystals are not stable for even 3 days. The reported light driven synthesis provides a simple and versatile approach to obtain phase pure CsPbI3 for possible optoelectronic applications.

5.
ACS Appl Bio Mater ; 6(2): 919-931, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36746648

RESUMO

The rapid emergence of superbugs which are resistant to existing antibiotics is becoming a huge global threat to public health, which demands the discovery of next-generation antibacterial agents for combating superbugs. Herein, we report the design of a two-dimensional (2D) reduced graphene oxide (r-GO) and one-dimensional (1D) WO3 nanowire-based photothermal-photocatalytic heterostructure for combating multiantibiotic-resistant Salmonella DT104, carbapenem-resistant Enterobacteriaceae Escherichia coli, and methicillin-resistant Staphylococcus aureus superbugs. In the presence of near-infrared (NIR) light, due to the generation of electrons and holes, the WO3-based heterostructure generates reactive oxygen species by photocatalytic reaction from water and oxygen, which kills superbugs. To enhance the photocatalytic superbug killing efficiency, r-GO has been used for suppressing the recombination of the photoinduced electron-hole pairs. Reported data show that NIR light-driven synergistic photocatalytic-photothermal processes can be used for 100% degradation of methylene blue using a heterostructure-based catalyst, and the photodegradation rate for the heterostructure is much better than the literature data for different types of WO3/GO-based nanocomposites. Experimentally, time-dependent antibacterial efficiency data reveals that the heterostructure can destroy 100% superbugs within 30 min of light exposure via a synergistic photothermal and photocatalytic mechanism, whereas the WO3 nanowire can kill around 35% superbugs only via photocatalytic action only and r-GO can kill 25% superbugs via photothermal action even after 30 min of exposure to light. Systematic time-dependent microscopy and spectroscopy studies reveal that the excellent antisuperbug activities for heterostructures are due to membrane damage, ATP, and DNA/RNA breakage. For possible real-life applications, sun light-based superbug inactivation shows 100% inactivation possible within 250 min of light exposure using 12 mg/mL heterostructures. The reported sun light-driven killing of superbugs provides a simple and versatile platform to combat drug-resistant superbugs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanofios , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química
6.
J Photochem Photobiol B ; 240: 112652, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682344

RESUMO

The majority of nosocomial infections are caused by bacteria with antimicrobial resistance and the formation of biofilms, such as implant-related bacterial infections and sepsis. There is an urgent need to develop new strategies for early-stage screening, destruction of multidrug-resistant bacteria, and efficient inhibition of biofilms. Organic dyes that absorb and emit in the near-infrared (NIR) region are potentially non-invasive, high-resolution, and rapid biological imaging materials. In this study, a non-toxic and biocompatible indolizine squaraine dye with water-solubilizing sulfonate groups (SO3SQ) is studied for bacterial imaging and photothermal therapy (PTT). PTT is efficient in eliminating microorganisms through local hyperthermia without the risk of developing drug-resistant bacteria. The optical properties of SO3SQ are studied extensively in phosphate-buffered saline (PBS). UV-Vis-NIR absorption spectra analysis shows a strong absorption between 650 nm - 1000 nm. SO3SQ allows for the wash-free fluorescence imaging of drug-resistant bacteria via NIR fluorescence imaging due to a "turn-on" fluorescence property of the dye when interacting with bacteria. Although SO3SQ exhibits no toxicity against both Gram-positive bacteria and Gram-negative bacteria, the PTT property of SO3SQ is efficient in killing bacteria as well as inhibiting and eradicating biofilms. PTT experiments demonstrate that SO3SQ reduces 90% of cell viability in bacterial strains under NIR radiation with a minimum inhibition concentration (MIC90) of >450 µg/mL. The PTT property of SO3SQ can also inhibit biofilms (BIC90 = 1000-2000 µg/mL) and eradicate both preformed young and mature biofilms (MBEC90 = 1500-2000 µg/mL) as observed by crystal violet assays.


Assuntos
Indolizinas , Fototerapia , Fototerapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Imagem Óptica , Biofilmes , Indolizinas/farmacologia
7.
ACS Appl Bio Mater ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053723

RESUMO

The emergence of Alpha, Beta, Gamma, Delta, and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for several million deaths up to now. Because of the huge amount of vaccine escape mutations in the spike (S) protein for different variants, the design of material for combating SARS-CoV-2 is very important for our society. Herein, we report on the design of a human angiotensin converting enzyme 2 (ACE2) peptide-conjugated plasmonic-magnetic heterostructure, which has the capability for magnetic separation, identification via surface enhanced Raman spectroscopy (SERS), and inhibition of different variant SARS-CoV-2 infections. In this work, plasmonic-magnetic heterostructures were developed using the initial synthesis of polyethylenimine (PEI)-coated Fe3O4-based magnetic nanoparticles, and then gold nanoparticles (GNPs) were grown onto the surface of the magnetic nanoparticles. Experimental binding data between ACE2-conjugated plasmonic-magnetic heterostructures and spike-receptor-binding domain (RBD) show that the Omicron variant has maximum binding ability, and it follows Alpha < Beta < Gamma < Delta < Omicron. Our finding shows that, due to the high magnetic moment (specific magnetization 40 emu/g), bioconjugated heterostructures are capable of effective magnetic separation of pseudotyped SARS-CoV-2 bearing the Delta variant spike from an infected artificial nasal mucus fluid sample using a simple bar magnet. Experimental data show that due to the formation of huge "hot spots" in the presence of SARS-CoV-2, Raman intensity for the 4-aminothiolphenol (4-ATP) Raman reporter was enhanced sharply, which has been used for the identification of separated virus. Theoretical calculations using finite-difference time-domain (FDTD) simulation indicate that, due to the "hot spots" formation, a six orders of magnitude Raman enhancement can be observed. A concentration-dependent inhibition efficiency investigation using a HEK293T-human cell line indicates that ACE2 peptide-conjugated plasmonic-magnetic heterostructures have the capability of complete inhibition of entry of different variants and original SARS-CoV-2 pseudovirions into host cells.

8.
ACS Omega ; 7(18): 16035-16042, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571808

RESUMO

As per the American Cancer Society, lung cancer is the leading cause of cancer-related death worldwide. Since the accumulation of exosomal programmed cell death ligand 1 (PD-L1) is associated with therapeutic resistance in programmed cell death 1 (PD-1) and PD-L1 immunotherapy, tracking PD-L1-positive (PD-L1 (+)) exosomes is very important for predicting anti-PD-1 and anti-PD-L1 therapy for lung cancer. Herein, we report the design of an anti-PD-L1 monoclonal antibody-conjugated magnetic-nanoparticle-attached yellow fluorescent carbon dot (YFCD) based magnetic-fluorescence nanoarchitecture for the selective separation and accurate identification of PD-L1-expressing exosomes. In this work, photostable YFCDs with a good photoluminescence quantum yield (23%) were synthesized by hydrothermal treatment. In addition, nanoarchitectures with superparamagnetic (28.6 emu/g), biocompatible, and selective bioimaging capabilities were developed by chemically conjugating the anti-PD-L1 antibody and YFCDs with iron oxide nanoparticles. Importantly, using human non-small-cell lung cancer H460 cells lines, which express a high amount of PD-L1 (+) exosomes, A549 lung cancer cells lines, which express a low amount of PD-L1 (+) exosomes, and the normal skin HaCaT cell line, which does not express any PD-L1 (+) exosomes, we demonstrate that nanoarchitectures are capable of effectively separating and tracking PD-L1-positive exosomes simultaneously. Furthermore, as a proof-of-concept of clinical setting applications, a whole blood sample infected with PD-L1 (+) exosomes was analyzed, and our finding shows that this nanoarchitecture holds great promise for clinical applications.

9.
ACS Omega ; 7(9): 8150-8157, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35252734

RESUMO

The emergence of double mutation delta (B.1.617.2) variants has dropped vaccine effectiveness against SARS-CoV-2 infection. Although COVID-19 is responsible for more than 5.4 M deaths till now, more than 40% of infected individuals are asymptomatic carriers as the immune system of the human body can control the SARS-CoV-2 infection. Herein, we report for the first time that human host defense neutrophil α-defensin HNP1 and human cathelicidin LL-37 peptide-conjugated graphene quantum dots (GQDs) have the capability to prevent the delta variant virus entry into the host cells via blocking SARS-CoV-2 delta variant (B.1.617.2) spike protein receptor-binding domain (RBD) binding with host cells' angiotensin converting enzyme 2 (ACE2). Experimental data shows that due to the binding between the delta variant spike protein RBD and bioconjugate GQDs, in the presence of the delta variant spike protein, the fluorescence signal from GQDs quenched abruptly. Experimental quenching data shows a nonlinear Stern-Volmer quenching profile, which indicates multiple binding sites. Using the modified Hill equation, we have determined n = 2.6 and the effective binding affinity 9 nM, which is comparable with the ACE2-spike protein binding affinity (8 nM). Using the alpha, beta, and gamma variant spike-RBD, experimental data shows that the binding affinity for the delta B.1.617.2 variant is higher than those for the other variants. Further investigation using the HEK293T-human ACE2 cell line indicates that peptide-conjugated GQDs have the capability for completely inhibiting the entry of delta variant SARS-CoV-2 pseudovirions into host cells via blocking the ACE2-spike protein binding. Experimental data shows that the inhibition efficiency for LL-37 peptide- and HNP1 peptide-attached GQDs are much higher than that of only one type of peptide-attached GQDs.

10.
Acc Mater Res ; 3(2): 134-148, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37556282

RESUMO

Infectious diseases by pathogenic microorganisms are one of the leading causes of mortality worldwide. Healthcare and socio-economic development have been seriously affected for different civilizations because of bacterial and viral infections. According to the Centers for Disease Control and Prevention (CDC), pandemic in 1918 by the Influenza A virus of the H1N1 subtype was responsible for 50 to 100 million deaths worldwide. Similarly, the Asian flu pandemic in 1957, Hong Kong flu in 1968, and H1N1pdm09 flu pandemic in 2009 were responsible for more than 1 million deaths across the globe each time. As per the World Health Organization (WHO), the current pandemic by coronavirus disease 2019 (COVID-19) due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is responsible for more than 4.8 M death worldwide until now. Since the gold standard polymerase chain reaction (PCR) test is more time-consuming, the health care system cannot test all symptomatic and asymptomatic Covid patients every day, which is extremely important to tackle the outbreak. One of the significant challenges during the current pandemic is developing mass testing tools, which is critical to control the virus spread in the community. Therefore, it is highly desirable to develop advanced material-based approaches that can provide a rapid and accurate diagnosis of COVID-19, which will have the capability to save millions of human lives. Aiming for the targeted diagnosis of deadly virus, researchers have developed nanomaterials with various sizes, shapes, and dimensions. These nanomaterials have been used to identify biomolecules via unique optical, electrical, magnetic, structural, and functional properties, which are lacking in other materials. Despite significant progress, nanomaterial-based diagnosis of biomolecules is still facing several obstacles due to low targeting efficiency and nonspecific interactions. To overcome these problems, the bioconjugated nanoparticle has been designed via surface coating with polyethylene glycol (PEG) and then conjugated with antibodies, DNA, RNA, or peptide aptamers. Therefore, the current Account summarizes an overview of the recent advances in the design of bioconjugated nanomaterial-based approached as effective diagnosis of the SARS-CoV-2 virus and the SARS-CoV-2 viral RNA, antigen, or antibody, with a particular focus on our work and other's work related to this subject. First, we present how to tailor the surface functionalities of nanomaterials to achieve bioconjugated material for targeted diagnosis of the virus. Then we review the very recent advances in the design of antibody/aptamer/peptide conjugated nanostructure, which represent a powerful platform for naked-eye colorimetric detection via plasmonic nanoparticles. We then discuss nanomaterial-based surface-enhanced Raman scattering (SERS) spectroscopy, which has the capability for very low-level fingerprint identification of virus, antigen, and antibody via graphene, plasmonic nanoparticle, and heterostructure material. After that, we summarized about fluorescence and nanoparticle surface energy transfer (NSET)-based on specific identification of SARS-CoV-2 infections via CNT, quantum dots (QDs), and plasmonic nanoparticles. Finally, we highlight the merit and significant challenges of nanostructure-based tools in infectious diseases diagnosis. For the researchers who want to engage in the new development of bioconjugated material for our survival from the current and future pandemics, we hope that this Account will be helpful for generating ideas that are scientifically stimulating and practically challenging.

11.
Nanoscale Adv ; 3(6): 1588-1596, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-34381960

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au-S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen-antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form "hot spots" to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light-matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in "hot spot" positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus.

12.
J Exp Pharmacol ; 13: 303-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776489

RESUMO

Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.

13.
JACS Au ; 1(1): 53-65, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33554214

RESUMO

Two-photon imaging in the near-infrared window holds huge promise for real life biological imaging due to the increased penetration depth. All-inorganic CsPbX3 nanocrystals with bright luminescence and broad spectral tunability are excellent smart probes for two-photon bioimaging. But, the poor stability in water is a well-documented issue for limiting their practical use. Herein, we present the development of specific antibody attached water-resistant one-dimensional (1D) CsPbBr3 nanowires, two-dimensional (2D) CsPbBr3 nanoplatelets, and three-dimensional (3D) CsPbBr3 nanocubes which can be used for selective and simultaneous two-photon imaging of heterogeneous breast cancer cells in the near IR biological window. The current manuscript reports the design of excellent photoluminescence quantum yield (PLQY), biocompatible and photostable 1D CsPbBr3 nanowires, 2D CsPbBr3 nanoplatelets, and 3D CsPbBr3 nanocubes through an interfacial conversion from zero-dimensional (0D) Cs4PbBr6 nanocrystals via a water triggered strategy. Reported data show that just by varying the amount of water, one can control the dimension of CsPbBr3 perovskite crystals. Time-dependent transition electron microscopy and emission spectra have been reported to find the possible pathway for the formation of 1D, 2D, and 3D CsPbBr3 nanocrystals from 0D Cs4PbBr6 nanocrystals. Biocompatible 1D, 2D, and 3D CsPbBr3 nanocrystals were developed by coating with amine-poly(ethylene glycol)-propionic acid. Experimental data show the water-driven design of 1D, 2D, and 3D CsPbBr3 nanocrystals exhibits strong single-photon PLQY of ∼66-88% as well as excellent two-photon absorption properties (σ2) of ∼8.3 × 105-7.1 × 104 GM. Furthermore, reported data show more than 86% of PL intensity remains for 1D, 2D, and 3D CsPbBr3 nanocrystals after 35 days under water, and they exhibit excellent photostability of keeping 99% PL intensity after 3 h under UV light. The current report demonstrates for the first time that antibody attached 1D and 2D perovskites have capability for simultaneous two-photon imaging of triple negative breast cancer cells and human epidermal growth factor receptor 2 positive breast cancer cells. CsPbBr3 nanocrystals exhibit very high two-photon absorption cross-section and good photostability in water, which are superior to those of commonly used organic probes (σ2 = 11 GM for fluorescein), and therefore, they have capability to be a better probe for bioimaging applications.

14.
J Phys Chem Lett ; 12(8): 2166-2171, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33629859

RESUMO

The ongoing outbreak of the coronavirus infection has killed more than 2 million people. Herein, we demonstrate that Rhodamine 6G (Rh-6G) dye conjugated DNA aptamer-attached gold nanostar (GNS)-based distance-dependent nanoparticle surface energy transfer (NSET) spectroscopy has the capability of rapid diagnosis of specific SARS-CoV-2 spike recombinant antigen or SARS-CoV-2 spike protein pseudotyped baculovirus within 10 min. Because Rh-6G-attached single-stand DNA aptamer wrapped the GNS, 99% dye fluorescence was quenched because of the NSET process. In the presence of spike antigen or virus, the fluorescence signal persists because of the aptamer-spike protein binding. Specifically, the limit of detection for the NSET assay has been determined to be 130 fg/mL for antigen and 8 particles/mL for virus. Finally, we have demonstrated that DNA aptamer-attached GNSs can stop virus infection by blocking the angiotensin-converting enzyme 2 (ACE2) receptor binding capability and destroying the lipid membrane of the virus.


Assuntos
Antígenos Virais/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Ouro/química , Nanopartículas Metálicas/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/análise , Enzima de Conversão de Angiotensina 2/metabolismo , Antígenos Virais/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Teste para COVID-19/métodos , Transferência de Energia , Humanos , Limite de Detecção , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Nanoscale ; 12(45): 22904-22916, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33185228

RESUMO

Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light-matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm-900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W-1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W-1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W-1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent-dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.

16.
ACS Omega ; 5(27): 16602-16611, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685826

RESUMO

Raman spectroscopy has capability for fingerprint molecular identification with high sensitivity if weak Raman scattering signal can be enhanced by several orders of magnitudes. Herein, we report a heterostructure-based surface-enhanced Raman spectroscopy (SERS) platform using 2D graphene oxide (GO) and 0D plasmonic gold nanostar (GNS), with capability of Raman enhancement factor (EF) in the range of ∼1010 via light-matter and matter-matter interactions. The current manuscript reveals huge Raman enhancement for heterostructure materials occurring via both electromagnetic enhancement mechanism though plasmonic GNS nanoparticle (EF ∼107) and chemical enhancement mechanism through 2D-GO material (EF ∼102). Finite-difference time-domain (FDTD) simulation data and experimental investigation indicate that GNS allows light to be concentrated into nanoscale "hotspots" formed on the heterostructure surface, which significantly enhanced Raman efficiency via a plasmon-exciton light coupling process. Notably, we have shown that mixed-dimensional heterostructure-based SERS can be used for tracking of cancer-derived exosomes from triple-negative breast cancer and HER2(+) breast cancer with a limit of detection (LOD) of 3.8 × 102 exosomes/mL for TNBC-derived exosomes and 4.4 × 102 exosomes/mL for HER2(+) breast cancer-derived exosomes.

17.
ACS Omega ; 5(7): 3116-3130, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118128

RESUMO

In the last three decades, there has been a huge increase in the number of antibiotic-resistant bacterial strains, which is becoming a serious threat to public health. Since the discovery of new effective antibiotics has dramatically decreased in last ten years, there are huge initiatives to develop new antimicrobial approaches to fight drug-resistant bacterial infections. In the last decade, a new nanoparticle-based tool has emerged to combat deadly bacterial infections, which may overcome the barriers faced by antibiotic resistance. The current mini-review highlights recent reports on two-dimensional (2D) graphene oxide (GO), 2D transition metal dichalcogenides (TMD), 2D MXenes, and 2D heterostructure material-based approaches to tackle bacteria. Notably, we discuss the major design criteria which have been used to develop novel antimicrobial 2D and heterostructure materials to eliminate bacterial infections. Next, details on the various mechanisms underlying antibacterial activity for 2D and heterostructure materials such as physical/mechanical damage, lipid extraction, oxidative stress, and photothermal/photodynamic effects have been discussed. Finally, we highlight the promises, major challenges, and prospects of nanomaterial-based approaches to combat multidrug-resistant bacterial infections.

18.
Nanoscale Adv ; 2(5): 2025-2033, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132493

RESUMO

The emergence of antibiotic-resistant bacteria is the biggest threat to our society. The rapid discovery of drug resistant bacteria is very urgently needed to guide antibiotic treatment development. The current manuscript reports the design of a 2D-0D heterostructure-based surface enhanced Raman spectroscopy (SERS) platform, which has the capability for the rapid identification of the multidrug resistant strain of Salmonella DT104. Details of the synthesis and characterization of the heterostructure SERS platform using a two dimensional (2D) WS2 transition metal dichalcogenide (TMD) and zero dimensional (0D) plasmonic gold nanoparticles (GNPs) have been reported. The current manuscript reveals that the 2D-0D heterostructure-based SERS platform exhibits extremely high Raman enhancement capabilities. Using Rh-6G and 4-ATP probe molecules, we determined that the SERS sensitivity is in the range of ∼10-10 to 10-11 M, several orders of magnitude higher than 2D-TMD on its own (10-3 M) or 0D-GNPs on their own (∼10-6 to 10-7 M). Experimental and theoretical finite-difference time-domain (FDTD) simulation data indicate that the synergistic effect of an electromagnetic mechanism (EM) and a chemical mechanism (CM) on the heterostructure is responsible for the excellent SERS enhancement observed. Notably, the experimental data reported here show that the heterostructure-based SERS has the ability to separate a multidrug resistance strain from a normal strain of Salmonella by monitoring the antibiotic-pathogen interaction within 90 minutes, even at a concentration of 100 CFU mL-1.

19.
ACS Appl Bio Mater ; 3(11): 7696-7705, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019509

RESUMO

Infectious diseases by multidrug-resistant superbugs, which cannot be cured using commercially available antibiotics, are the biggest threat for our society. Due to the lack of discovery of effective antibiotics in the last two decades, there is an urgent need for the design of new broad-spectrum antisuperbug biomaterials. Herein, we report the development of antisuperbug nanocomposites using human host defense antimicrobial peptide-conjugated biochar. To develop an economically viable technology, biochar, a carbon-rich material from naturally abundant resource, has been used. For combating broad-spectrum superbugs, a nanocomposite has been designed by combining biochar with α-defensin human neutrophil peptide-1 (HNP-1), human ß-defensin-1 (hBD-1), and human cathelicidin LL-37 antimicrobial peptide. The designed three-dimensional (3D) nanocomposites with pore size between 200 and 400 nm have been used as channels for water passage and captured superbugs. The reported data demonstrated that antimicrobial nanocomposite can be used for efficient capture and eradication of Gram-negative carbapenem-resistant Enterobacteriaceae (CRE) Escherichia coli (E. coli) and Klebsiella pneumoniae (KPN) superbugs, as well as Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) superbugs. Possible mechanisms for broad-spectrum antisuperbug activities using hydrogel have been discussed.

20.
Nanoscale Adv ; 1(3): 1021-1034, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544171

RESUMO

Breast tumor heterogeneity is responsible for the death of ~ 40,000 women in 2017 in USA. Triple-negative breast cancers (TNBCs) are very aggressive and it is the only breast cancer subgroup still lacking effective therapeutic. As a result, early stage detection of TNBC is vital and it will have huge significant in the clinics. Driven by the need, here we report the design of highly crystalline antibody-conjugated multifunctional multicolor luminescence nanosystem derived from naturally available popular tropical fruits mango and prune, which have capability to track breast cancer heterogeneity via selective separation and accurate identification of TNBC and HER-2 (+) or ER/PR (+) breast cancer cells selectively and simultaneously. A detailed synthesis and characterization of multifunctional multicolor nanosystems from tropical fruits has been reported. Experimental results show that by changing the fruits, multicolor luminescent carbon dots (LCDs) can be developed and is mainly due to the formation of highly crystalline nano dots with different heavy metal doping and also due to the presence of different types of surface functional groups. Experimental data presented show that multifunctional multicolor nanoprobe can be used for highly selective and simultaneous capturing of targeted TNBCs, HER2(+) or ER(+) breast cancer cells and the capture efficiency can be as high as 98%. Reported data indicate that multicolor fluorescence imaging can be used for mapping hetergenous breast cancer cells simultaneously, and it can distinguish targeted TNBCs from non-targeted HER-2 (+) or ER/PR (+) breast cancer. Our finding suggests excellent possibility of designing multicolor nanosystems from natural fruits for tracking cancer heterogeneity in clinics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...